При каких целых a, b, c функции $F1(x)=1/a(1+bx)^c$ и $F2(x)=1+x-1,5x^2$ является первообразной для одной и той же функции f(x)?

Если я правильно понял, то $F_1(x) = \frac{1}{a(1+bx)^c}$, а $F_2(x) = 1 + x - 1.5x^2$.

Т.к. $F_1(x) = \frac{1}{a(1+bx)^c}$ и $F_2(x) = 1+x-1,5x^2$ – первообразные одной и той же функции, то $F'_1(x) = F'_2(x)$.

$$F'_{1}(x) = \left(\frac{1}{a(1+bx)^{c}}\right)' = \frac{1}{a}\left[(1+bx)^{-c}\right]' = -\frac{c}{a}(1+bx)^{-c-1} \cdot (1+bx)' = -\frac{bc}{a}(1+bx)^{-c-1}.$$

$$F_2'(x) = 1 - 3x$$
. Поэтому $-\frac{bc}{a}(1 + bx)^{-c-1} = 1 - 3x$, $-c - 1 = 1 \Rightarrow c = -2$;

$$\frac{2b}{a}(1+bx) = 1-3x \Rightarrow a = 2b$$
; $1+bx = 1-3x \Rightarrow b = -3$ и $a = -6$.

Итак,
$$a = -6$$
, $b = -3$, $c = -2$ и $F_1(x) = -\frac{1}{6(1-3x)^{-2}} = -\frac{1}{6}(1-3x)^2 = -\frac{1}{6} + x - 1.5x^2$.

Вообще-то, если в выражении $F1(x)=1/a(1+bx)^c$ соблюдать старшинство арифметических операций, то должно быть $F_1(x)=\frac{(1+bx)^c}{a}$;

$$F'_{1}(x) = \left(\frac{(1+bx)^{c}}{a}\right)' = \frac{1}{a}\left[(1+bx)^{c}\right]' = \frac{c}{a}(1+bx)^{c-1} \cdot (1+bx)' = \frac{bc}{a}(1+bx)^{c-1};$$

$$\frac{bc}{a}(1+bx)^{c-1} = 1-3x \ c-1=1 \Rightarrow c=2; \ \frac{2b}{a}(1+bx)=1-3x \Rightarrow a=2b;$$

$$1 + bx = 1 - 3x \Rightarrow b = -3$$
 и $a = -6$. Всё почти также, только $c = 2$.

$$F_1(x) = -\frac{(1-3x)^2}{6} = -\frac{1}{6}(1-3x)^2 = -\frac{1}{6} + x - 1,5x^2$$
. Значение $F_1(x)$ от этого не изменилось!