1)
Решить уравнение:
$$\begin{cases} y' - \frac{6}{x} * y = x^7 - 4x^4 \\ y(1) = 0 \end{cases}$$

1.1. Находим общее решение соответствующего однородного уравнения

$$y' - \frac{6y}{x} = 0 \Leftrightarrow \frac{dy}{dx} = \frac{6y}{x} \Leftrightarrow \frac{dy}{y} = \frac{6dx}{x} \Rightarrow \ln y = \ln x^6 + \ln C \Rightarrow y = Cx^6$$
.

1.2. Методом вариации произвольной постоянной C = C(x) находим общее решения

уравнения
$$y' - \frac{6y}{x} = x^7 - 4x^4$$
: $y = C(x)x^6$; $y' = C'(x)x^6 + 6C(x)x^5$;

$$C'(x)x^6 + 6C(x)x^5 - \frac{6C(x)x^6}{x} = x^7 - 4x^4$$
; $C'(x)x^6 = x^7 - 4x^4$; $C'(x) = x - 4x^{-2}$;

$$C(x) = \int (x - 4x^{-2}) + C_2 = \frac{x^2}{2} + \frac{4}{x} + C_1; \quad y = \left(\frac{x^2}{2} + \frac{4}{x} + C_1\right)x^6 = \frac{x^8}{2} + 4x^5 + C_1x^6.$$

1.3. Находим решение, удовлетворяющее условию y(1) = 0:

$$\frac{1}{8} + 4 + C_1 = 0$$
; $C_1 = -\frac{33}{8} = -4\frac{1}{8}$ и

$$y = \frac{x^8}{2} + 4x^5 - 4\frac{1}{8}x^6.$$

- 2)Решить уравнение: y"-9y=5cos2x.
- 1.1. Находим общее решение соответствующего линейного однородного уравнения y'' 9y = 0.

Составляем характеристическое уравнение $k^2 - 9 = 0 \Leftrightarrow k^2 = 9$; $k_1 = 3$, $k_2 = -3$. Общее решение уравнения y'' - 9y = 0: $y = C_1 e^{3x} + C_2 e^{-3x}$.

1.2. Частное решение уравнения $y'' - 9y = \cos 2x$ ищем в виде $y = A\cos 2x + B\sin 2x$. $y' = -2A\sin 2x + 2B\cos 2x$; $y'' = -4A\cos 2x - 4B\sin 2x$;

$$-4A\cos 2x - 4B\sin 2x - 9A\cos 2x - 9B\sin 2x = \cos 2x \Rightarrow -13A = 1; -13B = 0;$$
 $A = -\frac{1}{13}; B = 0.$ Частное решение уравнения $y'' - 9y = \cos 2x$: $y = -\frac{1}{13}\cos 2x$.

1.3. Общее решение уравнения $y'' - 9y = \cos 2x$ равно сумме решений 1.1. и 1.2.:

$$y = C_1 e^{3x} + C_2 e^{-3x} - \frac{1}{13} \cos 2x$$
.

1

3)Найти экстремумы функции : $z=3x^3+3y^3-9xy+10$.

Необходимым условием существования экстремума в точке $z_0 = z(x_0, y_0)$ — это

$$\frac{\partial z(x_0,y_0)}{\partial x} = \frac{\partial z(x_0,y_0)}{\partial y} = 0.$$
 Точки (x_0,y_0) , удовлетворяющие этому условию, называ-

ются стационарными. Найдём стационарные точки.

$$\frac{\partial z}{\partial x} = 9x^2 - 9y; \quad \frac{\partial z}{\partial y} = 9y^2 - 9x. \quad \begin{cases} 9x^2 - 9y = 0 \\ 9y^2 - 9x = 0 \end{cases} \Leftrightarrow \begin{cases} x^2 - y = 0 \\ y^2 - x = 0 \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ x^4 - x = 0 \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ x(x-1)(x^2 + x + 1) = 0 \end{cases}.$$

Из 2-го уравнения последней системы: $x_1 = 0$, $y_1 = 0$; $x_2 = 1$, $y_2 = 1$ и

 $x^2+x+1=0$, $D=1^2-4\cdot 1=-3<0$, т.е. уравнение $x^2+x+1=0$ не имеет действительных корней. Таким образом, функция $z=3x^3+3y^3-9xy+10$ имеет две стационарные точки: (0;0) и (1;1).

Найдём вторые частные производные и вычислим значения этих производных в стационарных точках.

$$\frac{\partial^2 z}{\partial x^2} = 18x; \quad \frac{\partial^2 z}{\partial x \partial y} = -9; \quad \frac{\partial^2 z}{\partial y^2} = 18y.$$

3.1.
$$A = \frac{\partial^2 z(0,0)}{\partial x^2} = 18 \cdot 0 = 0$$
, $B = \frac{\partial^2 z(0,0)}{\partial x \partial y} = -9$, $C = \frac{\partial^2 z(0,0)}{\partial y^2} = 18 \cdot 0 = 0$.

 $\Delta = AC - B^2 = 0 \cdot 0 - (-9)^2 = -81 < 0$, т.е. стационарная точка (0; 0) не является точкой экстремума.

3.2.
$$A = \frac{\partial^2 z(1,1)}{\partial x^2} = 18 \cdot 1 = 18$$
, $B = \frac{\partial^2 z(0,0)}{\partial x \partial y} = -9$, $C = \frac{\partial^2 z(1,1)}{\partial y^2} = 18 \cdot 1 = 18$.

 $\Delta = AC - B^2 = 18 \cdot 18 - (-9)^2 = 324 - 81 = 273 > 0$, значит, точка (1; 1) — точка экстремума, и т.к. A > 0, то это точка минимума.

Значение функции в этой точке $z(1,1) = 3 \cdot 1^3 + 3 \cdot 1^3 - 9 \cdot 1 \cdot 1 + 10 = 7$.