Найти корни нелинейного уравнения $f(x) = \sqrt{x} - (1/(x+1)^2)$: а) методом хорд; б) методом Ньютона (методом касательных) с точностью $\varepsilon = 0,001$. Сравнить число итераций до достижения заданной точности в первом и втором методах. Сделать проверку найденного решения.

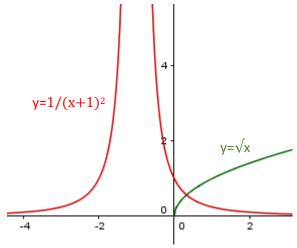
Решение.

Поскольку корень существует только для неотрицательных значений, то данная функция определена только при х≥0.

Требуется решить уравнение $\sqrt{x} - \frac{1}{(x+1)^2} = 0$ Преобразуем его

$$\sqrt{x} = \frac{1}{(x+1)^2}$$

Схематично изобразим графики левой и правой части



Имеется только одна точка пересечения. Это означает, что существует только один корень. Из исходной записи $f(x) = \sqrt{x} - \frac{1}{(x+1)^2}$ легко видеть, что f(0) < 0; f(1) > 0. Следовательно, корень лежит на отрезке [0;1]. Выберем в качестве начального приближения x_0 тот из концов отрезка [a,b], для которого выполняется условие $f(x_0) \cdot f''(x_0) > 0$:

$$f'(x) = \left(\sqrt{x} - \frac{1}{(x+1)^2}\right)' = \frac{1}{2\sqrt{x}} + 2(x+1)^{-3}$$
$$f''(x) = \left(\frac{1}{2}x^{-\frac{1}{2}} + 2(x+1)^{-3}\right)' = -\frac{1}{4\sqrt{x^3}} - \frac{6}{(x+1)^4}$$

Производные существуют только при x>0. Поэтому в качестве начальной точки отрезка возьмем достаточно малое значение x. На таком отрезке f''(x) < 0.

Тогда выполняется условие $f(a) \cdot f''(x) > 0$. Поэтому неподвижным будет конец b ($x_0 = a \rightarrow +0$). а) Решаем методом хорд. Формула имеет вид

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)}(b - x_n) = x_n - \frac{f(x_n)}{\frac{3}{4} - f(x_n)}(1 - x_n)$$

Вычисляем, пока не будет достигнута требуемая точность ($|\epsilon| < 0.001$):

n	Xn	f(x _n)	ε=x _{n+1} -x _n
0	0	-1	
1	0,571429	0,35097	0,571429
2	0,194475	-0,25989	-0,37695
3	0,401773	0,124942	0,207299
4	0,282195	-0,07704	-0,11958
5	0,349062	0,041355	0,066868
6	0,311075	-0,02402	-0,03799
7	0,332455	0,013347	0,02138
8	0,32036	-0,0076	-0,01209
9	0,327182	0,004272	0,006822
10	0,323328	-0,00242	-0,00385
11	0,325503	0,001364	0,002176
12	0,324275	-0,00077	-0,00123
13	0,324968	0,000435	0,000694

Ответ: 0,324 (13 итераций)

б) Решаем методом Ньютона (методом касательных). Расчетная формула этого метода:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Вычисляем, пока не будет достигнута требуемая точность:

n	X _n	f(x _n)	f'(x _n)	ε=x _{n+1} -x _n
0	0,0001	-0,9898	101,9994	
1	0,009804	-0,88166	12,04179	0,009704
2	0,083021	-0,56443	5,045032	0,073217
3	0,194899	-0,25891	3,437433	0,111878
4	0,270221	-0,09996	2,899587	0,075321
5	0,304694	-0,03548	2,712166	0,034473
6	0,317774	-0,01215	2,64794	0,01308
7	0,322361	-0,0041	2,626208	0,004587
8	0,323924	-0,00138	2,618894	0,001563
9	0,324451	-0,00046	2,616438	0,000527

Ответ: 0,324 (9 итераций – меньше, чем в первом случае)

Проверка:

$$f(0,324) = \sqrt{0,324} - \frac{1}{(0,324+1)^2} = -0.0012484872296948$$

Поскольку значение функции мало отличается от нуля, значит найденное значение является корнем уравнения с требуемой точностью