Серия: МАТЕМАТИКА

Жмудь А.А., Жмудь Т.А.

Основы теории точных вычислений при расчетах с округлениями

Аннотация

Предложена "Теория точных вычислений при расчетах с округлениями", введены базовые определения и теоремы.

1. Введение

В работе [1] показано, что к настоящему времени в прикладных дисциплинах существуют определенные математические проблемы, которые "фундаментальная" математика "как бы не замечает". В частности в сфере финансов, где требуется максимально строгая и точная отчетность, итоговые результаты зависят от порядка вычислений в связи с округлением промежуточных расчетов. С точки зрения "официальной математики" данная ситуация неизбежна и более того: является подтверждением "Теории ошибок" и "Теории элементарных приближенных вычислений" [2].

В данной работе предложены основы "Теории точных вычислений при расчетах с округлениями".

2. Базовые Определения и Теоремы Определение.

Точным значением округленного числа можно считать любое округленное число, если оно описывает вещественную величину, минимальное значение которой не может быть меньше единицы последнего разряда округления.

В "Общей теории точных вычислений при расчетах с округлениями" все округления объединяются в "Ситуативное округление".

Пример 1. Финансы, стандартное округление.

Доход в 3.6% на вклад в 7 рублей будет равен 25,2 копейки. Округленное значение 25 копеек считается точным, поскольку именно такую сумму банк обязан выдать клиенту.

Пример 2. Ситуативное округление

Требуется разделить 9 брюк на 5 человек так, чтобы каждому досталось одинаковое количество. Используя округление вниз в качестве "Ситуативного округления" получим: $9/5 = 1.8 \equiv 1 -$ это значение можно считать точным, поскольку каждому человеку, по условиям задачи, полагаются только одни брюки.

Теорема 1.

Конечное округленное значение любой функции числа, характеризующего вещественную величину, минимальное значение которой не может быть меньше единицы его последнего разряда и считающегося точным, будет всегда точным в рамках конкретных "корректных": правил округления, алгоритма и точности вычислений.

Доказательство 1.

Доказательство вытекает из фундаментального математического принципа "Воспроизводимости корректных вычислений".

Теорема 2.

Любые округленные значения, которые можно считать точными относительно одного и того же исходного точного числа, в общем случае не являются точными относительно друг друга.

Доказательство 2.

Из теории приближенных вычислений [2] известно, что любые округленные числа в общем случае имеют погрешность округления, т.е. в общем случае не являются точными друг относительно друга.

Теорема 3.

В расчетах с округлениями для любых преобразований точного числа в значения, которые можно считать точными, всегда можно сформировать алгоритм расчетов такой, чтобы значения, которые можно считать точными относительно исходного числа были бы точными относительно, как минимум, одного округленного точного числа, связанного с исходным числом.

Доказательство 3.

Если **a** – точное число и существует ряд чисел, связанных с данным числом произвольными функциями:

$$b = f_1 \cdot a, c = f_2 \cdot a, \dots n = f_n \cdot a,$$
 (1)

то для данного ряда чисел всегда можно написать следующий ряд выражений:

$$b = a + \Delta_1, c = a + \Delta_2, \dots n = a + \Delta_n,$$
 (2)

где Δ_1 , Δ_2 , ... Δ_n — точные числа (положительные, либо отрицательные), в случае если **b, с, ... n** — округленные значения, которые можно считать точными (см. Доказательство 1).

Из уравнений (1) и (2) следует, что для любого числа данного ряда можно написать:

$$k = i - \Delta_i + \Delta_k \,, \tag{3}$$

$$\Delta_i = a \cdot (1/f_i - 1)$$
, rae $i = 1, 2, ..., n$ (4).

И соответственно ряд

$$\mathbf{b} = f_1 \cdot \mathbf{a}, \mathbf{c} = \mathbf{b} - \Delta_1 + \Delta_2, \dots, \mathbf{n} = \mathbf{b} - \Delta_1 + \Delta_n$$
 (5)

можно считать точным по отношению к исходному числу \mathbf{a} и по отношению к \mathbf{b} .

3. Заключение

Очевидно, что Теорема 3 – разрешает точные вычисления при расчетах с округлениями, как минимум, в финансовых целях. В частности по схемам уравнений (1) – (5) построена и внедрена программа учета товарооборота [3].

Литература

- [1]. Жмудь А.А. ДНА, №20, 2012, стр. 28-31.
- [2]. Бронштейн И.Н., Семендяев К.А. Справочник по математике. Лейпциг-Москва, 1981.
- [3]. Жмудь А.А., Жмудь Т.А. Свидетельство о государственной регистрации программы для ЭВМ № 2014614848 Учет товарооборота: склады, реализация, отчетность. 12.05.2014г.